
A Short Report on Issues with DL-Learner

Tomáš Bisták

March 17, 2023

Introduction
In this document, we briefly discuss several issues with the latest imple-

mentation of DL-Learner we had to tackle throughout our experimentation.
We also present our solutions to the problems outlined below. The updated
version of DL-Learner to which we later refer is available on our GitHub1

(the branch v3). Besides the changes described in the following text, we
have made a couple of other modifications that we consider improvements
rather than fixes, and for this reason we decided not deal with them in this
report. Nevertheless, all these improvements are already included in the
implementation provided in the branch v3.

1 The Extended Definition of ρ

After noticing some inexplicable differences in the accuracy of two logi-
cally equivalent descriptions reported by OCEL, we found out that extending
the built-in ρ refinement operator according to the definition proposed in [1],
Section 5.4, may lead to inconsistencies between the expected and the actual
properties of the operator. More specifically, we think that the operation

≤ n r.D ⇝≤ n r.ρA(D),

for A = ar(r), any role r, concept D, and n ∈ N2, does not produce down-
ward refinements. Moreover, we believe that in reality, this operation can be
classified as an upward refinement operation if we assume that ρA(D) = E
for some E ⊑ D. To support our claims, we also provide a proof of the latter.

1https://github.com/mousetom-sk/DL-Learner
2Here, we assume that zero is an element of N as well.

1

https://github.com/mousetom-sk/DL-Learner

Proof. Let L be a description language which allows qualified number restric-
tions and K be a knowledge base in L. In order to prove that the operation
in question is an upward refinement operation, it is now sufficient to show
that for all concepts D, E ∈ CL such that E ⊑ D, all roles r ∈ RL, and any
n ∈ N, the proposition ≤ n r.D ⊑ ≤ n r.E holds, i.e. that for every model
I3 of K it is also true that

I ⊨ ≤ n r.D ⊑ ≤ n r.E. (1)

Therefore, let D and E be arbitrary concepts in CL with E ⊑ D, let
r ∈ RL be an arbitrary role, and let n be a natural number. Let us further
take an arbitrary model I of K. As we aim to prove (1) which holds if and
only if (≤ n r.D)I ⊆ (≤ n r.E)I , we first construct these sets based on the
definition of the interpretation function4:

(≤ n r.D)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}| ≤ n},

(≤ n r.E)I = {a ∈ ∆I | |{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}| ≤ n}.

Taking into account our premise that E ⊑ D, we can also conclude that for
any b ∈ ∆I , it has to be true that if b ∈ EI , then b ∈ DI , since E ⊑ D iff
EI ⊆ DI . Consequently, the inclusion

{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI} ⊆ {b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}

and the corresponding inequality

|{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}| ≤ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}|

must be satisfied for any a ∈ ∆I . Thus, when an individual a ∈ ∆I belongs
to the extension of ≤ n r.D, it has to be an element of (≤ n r.E)I as well,
because, given such an a ∈ ∆I , from our previous observations it follows that

n ≥ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ DI}|
≥ |{b ∈ ∆I | (a, b) ∈ rI and b ∈ EI}|.

This brings us to the desired conclusion that (≤ n r.D)I ⊆ (≤ n r.E)I .

As a straight-forward remedy for the described problem, we suggest in-
verting the direction in which the fillers are refined in this case. Applying the
proposed change should resolve this particular issue entirely, for the validity

3We will consider only finite interpretations.
4|S| denotes the cardinality of a finite set S.

2

of ≤ n r.D ⊑ ≤ n r.E, where E ⊑ D, also implies that ≤ n r.E ⇝≤ n r.D
is an operation of specialisation.

We have already made the necessary modifications to the implementation
of ρ by incorporating slightly adapted version of OperatorInverter’s refine
method directly into RhoDRDown. For more details, see the method named
refineUpwards.

Note on implementation: The try-catch block in the refineUpwards
method is there to ensure that the previous configuration options are re-
stored even if an error occurs in the process of refining the negated filler.
We decided to take this precaution, because we experienced issues regard-
ing concurrent access to a reasoner’s internal data structures when disabling
instance-based disjointness checks and sharing the same reasoner instance
among multiple operators in the operator pool serving the workers utilised
by ParCEL and ParCELEx algorithms. (We were only experimenting with
ClosedWorldReasoner.) However, in order to properly address this problem,
we had to eventually introduce ConcurrentClosedWorldReasoner.

Note on exact cardinality constraints: Inspecting the implementation of
RhoDRDown, we came across a code section trying to implement undocu-
mented rules to refine exact cardinality constraints. Since these were ap-
parently neither downward nor upward refinement operations, we decided to
comment this part out (despite the fact that exact cardinality constraints
are currently not included in top-concept refinements).

Note on data properties: Studying the theoretical definition of the ex-
tended ρ operator, we realised that in this definition, the restrictions on
numeric (double) data properties are also refined in the opposite direction.
Nonetheless, the most recent version of DL-Learner we found on GitHub
already implements the corrected definition of these refinement operations,
and thus we suppose it is no longer an open problem.

2 Cardinality Constraints and the Closed
World Reasoner

Unfortunately, redefining the ρ operator still did not fix all issues with
accuracy. We noticed this while comparing the performance of CELOE and
OCEL which could not agree on accuracy of concepts containing at-most re-
strictions because of using different ways to compute the coverage of a class
expression. Whereas CELOE indirectly calls the getIndividuals method of
the loaded reasoner (see getCoverageCount in ReasoningUtils), OCEL de-

3

pends on its hasType method. Closely examining ClosedWorldReasoner’s5

implementation of these two methods, we came to the conclusion that the
contradictory results were caused mostly by one simple, yet a few times re-
peated mistake in the process of determining whether an individual satisfies
an at-most or at-least restriction. It consisted in forgetting to add the number
of the already seen related individuals belonging to the extension of the filler
to the number of the remaining related individuals when checking if it is still
possible for the individual to be (or not to be) covered by the given expression
(in the method hasTypeImpl, see the code for handling the cases in which
description is OWLObjectMinCardinality, OWLObjectMaxCardinality, or
OWLObjectExactCardinality). In getIndividualsImpl, on the other hand,
there was a missing (or mispositioned) if statement in the section responsible
for retrieving individuals satisfying an at-most restriction.

Side note On Universal-Quantification Semantics In General: The Some-
Only and NonEmpty universal-quantification semantics are not always cor-
rectly treated by ClosedWorldReasoner, however, we have not addressed
this issue, since we decided to use the Standard semantics (although, we
have marked some of the problematic places with appropriate TODOs).

3 Multiple-Criteria Heuristic: Length
Bonus Calculation

In order to improve the performance of OCEL, we also considered alter-
ing the default configuration of MultiHeuristic to better suit our needs.
Looking more deeply into its implementation, we had a chance to learn how
the length bonus is calculated - the method getHeuristicLengthBouns. We
have to say that we deem this procedure a little suspicious mainly for the
following two reasons. Firstly, the bonus does not accumulate while iterating
through the expressions nested inside the one being evaluated. This may be
due in part to the fact that the algorithm works only with a set of subex-
pressions, ignoring duplicates. Secondly, the aforementioned set provides no
guarantee of a reasonable and stable traversal order. Hence, we decided to
re-implement this method in such a way that the bonus is now calculated
cumulatively, taking into account all the subexpressions (each instance of
a repeated expression separately) and the actual length metric used during
the search. You can find this new version of the getHeuristicLengthBouns
method in our DL-Learner GitHub repository as well.

Note on implementation: In our implementation, we omitted the bonus
5ClosedWorldReasoner was the only reasoner involved in our experiments.

4

for data-property restrictions because we hold the opinion that all con-
stituents of these expressions bear enough additional information w.r.t. their
length, thereby eliminating the necessity to promote their use.

4 ParCEL and ParCELEx Unable to Reach
Simple Refinements

Experimenting with the useHasValueConstructor option for the ρ op-
erator, we discovered that ParCEL and ParCELEx algorithms were unable
to reach refinements having the same length as the description they resulted
from. This problem resided in the fact that the workers were accepting only
the refinements which were longer than the current horizontal expansion of
the parent node, which is always initialised to the length of the expression
the node contains. We thus resolved this issue by modifying the method
refineNode in the ParCELWorkerAbstract class (so that workers ask for
refinements whose length is at most equal to the horizontal expansion) and
also the corresponding if conditions in all worker implementations (inside
their respective definitions of the method run). Please, keep in mind that we
have tested only the correctness of ParCELWorker, ParCELWorkerExV2, and
ParCELWorkerExV12 after this change.

5 Other Detected Flaws and Improvements

5.1 Defining Start Class with OCEL
Defining a custom startClass was not properly supported by OCEL,

since there was also a private member variable, named startDescription,
whose value was, indeed, the one stored in the root of the search tree.
Therefore, we removed the startDescription variable entirely, leaving only
startClass.

5.2 Computing Applicable Object Properties for ρ

The set of applicable object properties is now computed with the help of
the materialised representation of property domains - opDomains. For more
details, see the method comupteApp in RhoDRDown.

5

5.3 Top-Concept Refinements: Constructing M for
More Specific Domains

All existential-quantification expressions having nominals as fillers, i.e.
OWLObjectHasValue, and all self restrictions, i.e. OWLObjectHasSelf, were
stored in m instead of mA.

5.4 Calculating Accuracy for ParCEL and
ParCELEx

When calculating accuracy, correctness, and completness (the method
getAccuracyAndCorrectness3 in ParCELPosNegLP), the algorithm tries to
synchronise on uncoveredPositiveExamples in order to make a local copy.
However, since the variable is not final, the underlying reference may change
via a call to setUncoveredPositiveExamples. Even though, this actu-
ally never happens, we would rather remove this vulnerability and lever-
age the fact that when we first set this variable, only the reference to the
object managed by the learner gets copied, so any change to that object
will be automatically registered (and also any attempt to synchronise within
ParCELPosNegLP will also prevent other threads from entering the critical
sections inside ParCELAbstract or ParCELExAbstract methods). For more
details, see the updated implementation of setUncoveredPositiveExamples
and notice that the methods such as newPartialDefinitionsFound do not
invoke it anymore.

Probably a more serious flaw we found was that instead of using the
previously constructed local snapshot of uncoveredPositiveExamples, its
"live" counterpart was used in the denominator of the formula for calculating
completeness.

5.5 Minimising C ⊔ ¬C

Minimisation of expressions having the form C1 ⊔ C2 ⊔ · · · ⊔ Cn, where
Ci ≡ ¬Cj for some 1 ≤ i < j ≤ n, was not properly implemented in
OWLClassExpressionMinimizer. More precisely, the algorithm only needed
to know that Ci ⊑ ¬Cj was satisfied in order to deduce that Ci ≡ ¬Cj (see
the original and the corrected method visit for OWLObjectUnionOf).

6

5.6 ParCELCoveredNegativeExampleComparator Not
Comparing Based on The Coverage of Negatives

This comparator’s compare method was comparing the number of nega-
tive examples covered by node1 to the number of positive examples covered
by node2 instead of comparing their coverage of negative examples.

References
[1] Jens Lehmann and Pascal Hitzler. Concept learning in description logics

using refinement operators. Machine Learning, 78:203–250, 2009.

7

	The Extended Definition of
	Cardinality Constraints and the Closed World Reasoner
	Multiple-Criteria Heuristic: Length Bonus Calculation
	ParCEL and ParCELEx Unable to Reach Simple Refinements
	Other Detected Flaws and Improvements
	Defining Start Class with OCEL
	Computing Applicable Object Properties for
	Top-Concept Refinements: Constructing M for More Specific Domains
	Calculating Accuracy for ParCEL and ParCELEx
	Minimising C C
	ParCELCoveredNegativeExampleComparator Not Comparing Based on The Coverage of Negatives

