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Abstract. The problem of predicting the membership w.r.t. a target concept for
individuals of Semantic Web knowledge bases can be cast as a concept learning
problem, whose goal is to induce intensional definitions describing the available
examples. However, the models obtained through the methods borrowed from
Inductive Logic Programming e.g. Terminological Decision Trees, may be af-
fected by two crucial aspects: the refinement operators for specializing the con-
cept description to be learned and the heuristics employed for selecting the most
promising solution (i.e. the concept description that describes better the exam-
ples). In this paper, we started to investigate the effectiveness of Terminological
Decision Tree and its evidential version when a refinement operator available
in DL-Learner and modified heuristics are employed. The evaluation showed an
improvement in terms of the predictiveness.

1 Introduction

In the context of the Semantic Web, the effectiveness of the reasoning on the knowl-
edge represented in ontological form through languages derived from Description Log-
ics (DLs) [1] formalism is affected by the inherent incompleteness due to the Open
World Assumption

In the last years, resorting to machine learning methods have shown promising re-
sults for tackling this problem, for instance, by inducing predictive models to assess the
membership of an individual w.r.t. a given concept for supporting various tasks such
as (approximate) query answering and ontology completion. Despite the large avail-
ability of inductive methods for solving the problem [2], in this work (and similarly
to other previous ones [3–5]) we focused on methods borrowed from Inductive Logic
Programming (ILP) for solving the concept learning problem. These methods produce
intentional definitions that describe the available instances that can be used for clas-
sifying them and therefore offering a trade-off between comprehensibility and predic-
tiveness. In these methods, the learning is usually considered as a search process where
the best solution as possible (i.e. the most accurate description among the possible ones
describing the instances) is obtained via refinement operators to specialize or generalize
the promising concept description, i.e. for obtaining a new concept description which



subsumes or is subsumed by the given one. Such methods,e.g. DL-FOIL [6], typically
resorts to a separate-and-conquer strategy that aims at covering the largest number of
positive instances excluding the negative ones. More recently, DL-LEARNER [7] has
become a state-of-the-art framework that provides the implementation of various learn-
ing algorithms such as CELOE [8] and EL TREE LEARNER (ELTL) [9].

However separate-and-conquer methods suffers of some drawbacks. For instance,
such methods learns one concept description at once. In addition, separate-and-conquer
approaches tend to consider partial solutions more times yielding inefficient solutions
for the learning problem. Finally, these methods may fail to induce the description when
the learning problem is hard. On the other hand, divide-and-conquer strategies have
been exploited to overcome such problems. Among divide-and-conquer solutions, it is
possible to mention decision tree models, which have been devised for solving learning
problems, also in the context of multi-relational data representations and, in particular,
for knowledge bases modeled with Description Logics formalism. Such extensions are
called Terminological Decision Trees [3]. Also, further extensions, namely Evidential
Terminological Decision Trees, are able to represent the uncertainty and to handle the
presence of tests with uncertain result by resorting to the Dempster-Shafer Theory [4,
5, 10]. In order to improve the quality of the aforementioned models, there are two cru-
cial aspects that should be investigated: the refinement operator adopted to generates
the candidate concept descriptions to be installed as a new node and the heuristics for
selecting the best description [11]. Specifically, for both Terminological Decision Trees
and their evidential version, the refinement operator used in [3–5] may not generate
candidates that discerns the positive instances from the negative ones, likely due to
the nature of the employed operator which exploits randomly generated sub-concepts
and roles of a knowledge base. As a consequence, the resulting specializations may
be not definitely related to the target concept and a large number of both missing val-
ues and misclassification cases may be found in the test phase. This problem affects
also the values of the heuristic employed for selecting the best concept description: the
candidates concepts have similar values of either information gain (in the case of the
terminological decision trees) or non-specificity measure (in the case of the evidential
terminological decision trees [4]). Moving from this idea, we carried out a preliminary
analysis concerning the effectiveness of tree models endowed with another refinement
operator and additional measures integrated into the heuristic employed for inducing
the models. Specifically, we used a refinement operator adopted by CELOE and imple-
mented in DL-LEARNER and introduced a regularized versions of the heuristics used
for the best concept selection which is based on the Jaccard similarity.

The rest of the paper is organized as follows: Sect. 2 recalls the notion of DL
knowledge bases and the refinement operator; Sect. 3 gives some notions about the
Terminological Decision Trees and Evidential Terminological Decision Trees and de-
scribes the procedure for inducing Terminological Decision Trees that includes both the
novel refinement operator and a Jaccard-based regularization term in the heuristic ex-
ploited for selecting the best concept, Sect. 4 proposes an empirical evaluation in order
to understand the effectiveness of the proposed changes in the Decision Tree learning
algorithms. Finally, conclusions and further outlooks are reported.



2 Basics

In this section we recall the notions concerning Description Logics and we introduce
the class-membership prediction and the concept learning problems. Finally, we briefly
provide some notions about the Dempster-Shafer Theory that are used by the extension
of terminological decision tree considered in the paper.

2.1 Description Logics and Knowledge Bases

Description Logics (DLs) [1] are a family of knowledge representation languages ex-
ploited to model a domain in terms of concepts and roles. Given a set of atomic concept
names NC = {A,B, · · · } and roles NR = {R,S, · · · }, more complex concept de-
scriptions (usually denoted by the letters C,D, · · · ) regarding a set of objects, named
individuals, can be built by using a set of operators (e.g. complement, conjunction and
disjunction between concepts). The set of operators adopted to build the concept de-
scriptions determines the expressiveness of the representation language. In DLs, the
knowledge about the domain is intensionally modeled by using a set of inclusion (sub-
sumption) axioms between the concepts such as C v D (C is subsumed by D). Also,
the domain can be described by a set of facts concerning the individuals. Such facts are
called concept and role assertions and they are usually denoted by C(a) and R(a, b).
Therefore, a DL knowledge base is a couple K = (T ,A) where T is the TBox con-
taining the intensional knowledge andA is the Abox containing the assertions. We will
denote the set of individuals occurring in A by Ind(A).

Similarly to other first-order logic-based formalisms, the semantics is defined for
each concept / role / individual by interpreting them according to the model-theoretic
semantics. Formally, an interpretation is a couple I = (∆I , ·I) composed by a non-
empty set of objects representing the domain of the interpretation ∆I and an interpre-
tation function ·I that maps: 1) each individual a to an object aI ∈ ∆I ; 2) each concept
C to a subset CI ⊆ ∆I ; 3) each role R to a subset RI ⊆ ∆I × ∆I . The semantics
of a complex description, say C is defined by applying recursively the interpretation
function to the concepts used to build C. According to the model-theoretic semantics,
an interpretation I satisfies an axiom C v D when CI ⊆ DI and an assertion C(a)
(resp. R(a, b)) when aI ∈ CI (resp. (aI , bI) ∈ RI). I is a model for K when it
satisfies each axiom/assertion α in K (I |= α). When the axiom α is satisfied w.r.t.
these models, we write K |= α. Various reasoning services are available for making
new inferences fromK, which may involve either the TBox or the ABox. Among them,
we recall the instance-checking inference service that is crucial from an inductive point
of view: given an individual a and a concept description C the goal is determine if
K |= C(a). The Open World Assumption (OWA) that is usually made in this context,
may affect the ability to prove the truth of either K |= C(a) or K |= ¬C(a), as there
may be possible to find different interpretations that satisfy either cases.

In the sequel we will denote by sh ↓ for a concept A (a role R), the set of direct
(asserted) sub-classes (resp. sub-roles) of the atomic concept A (resp. role R). Besides,
a role R is applicable when ∃A ∈ NC where domain(R) v A and there is no A′ such
that domain(R) v A′ v A. Finally, we denote as ar(R) a concept as A ∈ NC where
range(R) v A and there is no A′ such that range(R) v A′ v A.



2.2 Class-membership prediction and Concept Learning Problem

The task of assessing the membership of an individual w.r.t. a target concept through
inductive methods aims at approximating a function from the available instances that
allows to determine if a an individual is an instance of the concept or not. A possible
formalization of the problem, as proposed in [5], is reported below:

Definition 1 (Class-membership prediction problem).

Given
– a target concept C;
– a label set L = {−1, 0,+1}
– an error threshold ε
– a training set Tr ⊆ Ind(A) of examples for which the correct classification

value of tC(·) : Ind → L is known, partitioned into positive, negative and
uncertain-membership instances:
• Ps = {a ∈ Ind(A) | K |= C(a), i.e. tC(a) = +1},
• Ns = {a ∈ Ind(A) | K |= ¬C(a), i.e. tC(a) = −1}
• Us = Tr \ (Ps ∪ Ns), i.e. {a ∈ Ind(A) : tC(a) = 0};

Build a classifier hC : Ind(A)→ {−1, 0,+1} for C such that

1

|Tr|
∑
a,∈Tr

1[hC(a) = tC(a)] > 1− ε

where 1[·] is the indicator function returning 1 if the argument is true and 0 other-
wise.

To this purpose, various methods can be used for approximating this function, e.g.
non-parametric models [2]. As an alternative, intensional descriptions of the available
examples can be produced. Learning such descriptions is usually known as concept
learning problem [11]. The concept learning problem in the context of a knowledge
base can be formalized as follows.

Definition 2 (Concept Learning in DLs).

Given
– the knowledge base K = 〈T ,A〉,
– a target concept C,
– the training set Tr = Ps ∪ Ns ∪ Us,

Find a concept description D approximating C, such that:
– ∀a ∈ Ps : K |= D(a)
– ∀b ∈ Ns : K |= ¬D(b)

Therefore the goal of learning process is to find a concept description that is correct
w.r.t. the examples. One could not be interested to a solution that fit perfectly to the
training individuals but to induce a description general enough for classifying new indi-
viduals. Concept learning can be regarded as a search process in the space of concepts
S, which can be explored by imposing a quasi-ordering between DL concepts, i.e. a



reflexive and transitive relation and then to use a refinement operator which maps a
concept onto a set of other concepts. In the following, we consider the subsumption
relation v between concepts as a quasi-ordering relation.

The definition of the refinement operator is reported below:

Definition 3. Given a quasi-ordered space (S,v), a downward (resp. upward) refine-
ment operator ρ is mapping from S to 2S such that for any concept description C ∈ S
and C ′ ∈ ρ(C), C ′ v C (resp. C v C ′)

2.3 The Dempster-Shafer Theory

One of the models exploited in this paper is a modified version of terminological de-
cision trees endowed with the operators of the Dempster-Shafer Theory (DST) [10].
Therefore, for sake of completeness, we shortly recall the basic notions of this theory
used by such predictive models.

The DST is regarded as a generalization of probability theory. In the DST, a domain
is usually represented through a frame of discernement, denoted byΩ, i.e. a set of mutu-
ally and exhaustive hypotheses. For our purposes, the frame of discernment represents
the set of admissible membership values w.r.t. the target concept C, i.e.Ω = {−1,+1}.

Given the frame of the discernment, a Basic Belief Assignment (BBA) can be build,
that is a mapping m : 2Ω → [0, 1] such that ∀A ∈ 2Ω m(A) > 0 if A 6= ∅ and∑
A∈2Ω m(A) = 1. The value of a BBA function for a set of hypotheses A conveys the

amount of belief exactly assigned to A but not to its subsets. In the DST, knowing the
BBA allows to determine the belief and the plausibility functions. The belief function is
a mapping Bel : 2Ω → [0, 1] such that ∀A ∈ 2Ω Bel(A) =

∑
B⊆Am(B) represents

the total amount of belief assigned to A given the available evidences. The plausibility
function is a mapping Pl : 2Ω → [0, 1] such that ∀A ∈ 2Ω Pl(A) =

∑
B∩A6=∅m(B)

and it quantifies the total amount of belief in favor of a set of hypothesesAwhen further
evidences are available.

Other important notions concern the non-specificity measure [12] and the combi-
nation rules [13]. Given a BBA m the non-specificity measure Ns(m) quantifies the
degree of imprecision about the knowledge about a set of hypotheses, i.e. Ns(m) =∑
A⊆Ω,A6=∅m(A) log |A|. A large non specificity measure denotes high uncertainty

and imprecision about the available knowledge. As regards the combination rules, they
represent operators used to pool BBAs coming from heterogeneous sources of infor-
mation. The literature proposed various approaches for combining BBAs [13]. Among
them, the Dubois-Prade combination rule has been adopted in the evidence-based ver-
sion of a terminological decision tree [14]. The operator pools two BBAs, m1 and m2

as follows: ∀A ∈ 2Ω m12(A) =
∑
B∪C=Am1(B)m2(C).

3 Learning Tree models in DLs

3.1 The models

The class-membership prediction task can be tackled by inducing either Terminological
Decision Trees (TDTs) [3] or Evidential Terminological Decision Trees (ETDTs) [4].



Person

Person u ∃hasPublication.>

Person u ∃hasPublication.(SWJ)

SW ¬SW

¬SW

¬SW

Fig. 1. A TDT for deciding if a person is a researcher that works in the field of the Semantic Web

Definition 4 (Terminological Decision Tree). Given the knowledge base K, a Termi-
nological Decision Tree is a binary tree where:

– each intermediate node contains a conjunctive concept description D that stands
for a test;

– each leaf contains a label used to denote the (positive/negative) membership w.r.t.
the target concept C

– the branches correspond, respectively, to the result of the test performed over D
(resp. ¬D);

As illustrated in [3], a TDT can be used to learn concept descriptions and to de-
termine the membership for an unseen individual. However, as argued in [4], when
a TDT is used for predicting the class-membership for a new individual, the models
cannot assign a definite membership due to intermediate tests with an unknown result.
This is similar to the presence of missing values for decision trees targeting attribute-
value datasets. In order to take into account this aspect, Evidential Terminological De-
cision Trees (ETDTs) have been devised [4, 5]. They are defined as an extension of the
TDTs [3] based on the evidential reasoning [10].

Definition 5 (Evidential Terminological Decision Tree). Given the knowledge base
K, an Evidential Terminological Decision Tree is a binary tree where:

– each intermediate node contains a pair (D,m) where D is a conjunctive concept
description that stands for a test and m is used to describe the membership w.r.t.
D;

– each leaf contains both the label and the BBA m used to describe the membership
w.r.t C;

– the branches correspond, respectively, to the result of the test performed over D
(resp. ¬D);

Fig. 1 and Fig. 2 report two examples of a TDT and an ETDT that are used for
deciding the membership of an individual w.r.t. the target concept Semantic Web re-
searcher (SW). The models can be used for deciding if an individual is a researcher
whose topic concerns the Semantic Web.



m=(p:0.30,n:0.36,u:0.34)
Person

m=(p:0.50,n:0.16, u:0.14)
Person u ∃hasPublication.Sac

m=(p:0.60,n:0.40,u:0.00)
Person u ∃hasPublication.(Sac u Swa)

m=(p:1.0,n:0.0, u:0.0)
SW

m=(p:0.0,n:1.0, 0.0)
¬SW

m=(p:0.5,n:0.4,u:0.1)
¬(Person u ∃hasPublication.¬SAC) u ∃hasPublication.ESWC)

m=(p:0.9,n:0.0, u:0.1)
SW

m=(p:0,n:0.9, u:0.1)
¬SW

m=(p:0,n:0, u:1.0)
¬SW

Fig. 2. An ETDT for deciding if a person is a Semantic Web researcher

3.2 Training

Given the concept C (used a label to be installed as a leaf) and the training set Tr =
〈Ps,Ns,Us〉, the methods for inducing both TDTs and ETDTs apply a divide-and-
conquer strategy (see [3–5] for further details). The methods perform a recursive parti-
tioning of the training set where, at each level, the individuals are grouped according to
the results of some instance-check tests w.r.t. the most promising concepts description.
The process is repeated until the instances sorted to a node have the same definite mem-
bership w.r.t. C. The concept descriptions that are installed as nodes during the training
step are generated by specializing the concept installed as father node and passed as
an input for the algorithm. Among the possible candidates, the algorithms select the
best description according to a certain heuristic. In the case of ETDTs, the algorithm
generates for the current node both a concept and a BBA estimating by using relative
frequencies of the positive, negative and uncertain-membership instances routed to the
node. Two examples of the learning procedures for TDTs and ETDTs are reported be-
low.

Example 1 (Inducing TDTs). As regards the induction of the TDT reported in Fig. 1,
the concept Person is installed as root note. The first refinement that is installed as a
left-child node is Person u ∃hasPublication.>, which describes all the instances of the
concept Person with a publication. This concept description is obtained by adding an
existential restriction as a conjunct. The concept Person u ∃hasPublication.> installed
as new node is further specialized by using the instances with a positive membership
w.r.t the concept, resulting in the concept Person u ∃hasPublication.SWJ where a new
concept name is introduced, namely SWJ (the concept used to denote the papers ap-
peared in the Semantic Web Journal). Again, this concept is installed as left-child node.

Example 2 (Inducing ETDTs). Also the induction of the ETDT reported in Fig 2 starts
from the concept Person. In this case, the first refinement that is installed into the
left-child node is Person u ∃hasPublication.SAC, where SAC is a new concept name
concerning all papers appeared in SAC proceedings. The instances reached the node
are then split according to the instance-check test results, and the concept is further spe-
cialized so that the concept Person u ∃hasPublication.SAC u SWA is obtained, where
SWA is related to those papers presented in the Semantic Web Application Track. After
the installing of the new node and the further split of the training instances, the next



node that is installed as a leaf. The other branches of the trees can be obtained likewise.
In addition, we can observe that the BBA m assigned to each intermediate node has a
decreasing level of non-specificity measure w.r.t. the previous level.

Refinement operators As introduced in Sect. 1, refinement operators play a funda-
mental role for determining the strategy to navigate the concepts space and, in the case
of TDTs and ETDTs, for obtaining the candidates concepts to be chosen and installed
into the nodes. The examples reported above induce the trees by using the downward
refinement operator adopted in [3] and [4] that generate specializations in one of the fol-
lowing forms: 1) by introducing a new concept name (or its complement as conjunct);
2) by refining a sub-description in the scope of an existential restriction; 3) by refining a
sub-description in the scope of an universal restriction. This naı̈ve refinement operator
exploits concept names and roles without considering information like the concept hier-
archy asserted in a knowledge base. Conversely, the refinement operator implemented
in DL-LEARNER framework (that contains the implementation of various ILP-based
learning algorithms) [7] consider this aspect and can be also extended for addressing
various DL expressiveness.

Fig. 3.2 describes the refinement operator employed in this work: MB is the set of
the specializations of > obtained without resorting to disjunction operator that are not
disjoint from B ∈ {>} ∪ NC . This means that MB contains concept in one of the
following forms:

– A ∈ NC where A u B 6= ⊥ and A u B 6= ⊥ and there is no A′ ∈ NC such that
A′ v A

– ¬A ∈ NC where ¬A u B 6= ⊥ and ¬A u B 6= ⊥ and there is no A′ ∈ NC such
that A v A′

– ∀R.>, where R is the most general applicable role for B , i.e. there is no applicable
role R′ such that R v R′

– ∃R.>, where R is the most general applicable role for B

The ρ operator generates the specializations as follows. Firstly, it delegates the re-
finement process to an operator ρB(·), Using the indexB allows to exclude the concepts
that are disjoint with B. At the beginning B = >. The ρ>(·) distinguishes various
cases: the simplest cases concern the generation of the refinements for ⊥ and >. For ⊥,
the specialization process ends by returning an empty set of concepts. In the case of the
refinement of >, the operator returns disjunction of concepts Ci where Ci ∈ MB(C).
Additional cases concern the refinement of an atomic concept A or its negation. For
the atomic concept, the refinement operator returns two sets of specializations: the first
set contains sub-concepts A′ such that A′ v A, i.e. A′ ∈ sh ↓ (A), while the second
set contains concepts obtained through the conjunction of the concept A and concepts
D ∈ ρB(>). The case of the complement of an atomic concept is tackled dually to
the previous one but the operator generates also refinements in the form ¬A′ where
A′ ∈ sh ↑ (A).

The third case concerns the refinement of a concept in the form of an existential
restriction C = ∃R.D 4. The operator produces three kinds of refinements: the first

4 The refinement operator was originally devised to consider ALC expressiveness



one is obtained by replacing the sub-description D with a sub-description E that is a
concept subsumed by D and it is not disjoint with the range of the role R; the second
kind of refinements is obtained by replacing the sub-description D with the one in the
form D u E, where E is a refinement contained into the set of specializations of >;
the third kind of refinements are obtained by replacing the role R with a sub-role S, i.e.
S ∈ sh ↓ (R).

The fourth case described in Fig.3.2 illustrates the case of a concept in the form
of an universal restriction, i.e. C = ∀R.D. This case is substantially dual to the case
of existential restriction except for the specializations in the form ∀R.⊥ generated for
the atomic concepts that have no sub-concepts. The last two cases concern concepts in
conjunctive and disjunctive forms. In the first case, the refinement operator generates
specializations by replacing a sub-description Ci with its refinements obtained by ap-
plying recursively the refinement operators. In the second case, the refinement operator
produces specializes not only the various concept sub-description Ci (as in the case of
conjunctive concept descriptions) but also it adds a new concept D as a conjunct.

Example 3 illustrates a simple example about the generation of the specializations.

Example 3 (ρ refinements). Let the following knowledge base be given:

K = {Man v Person,Woman v Person,ESWC v Publication
EKAW v Publication,EKAW u ESWC ≡ ⊥
domain(hasFirstAuthor) = Publication,

range(hasFirstAuthor) = Person }

The refinement operator generates the following refinements for >:

ρ(>) = {Person,Publication,¬Man,¬Woman,
¬EKAW,¬ESWC,

∀hasFirstAuthor.>,∃hasFirstAuthor.>, . . . }

By using ρ, it is possible to specialize the concept Publicationu∃hasFirstAuthor.Person
generating the following set of concept descriptions:

ρ(Publication u ∃hasFirstAuthor.Person) = {Publication u ∃hasFirstAuthor.Man
Publication u ∃hasFirstAuthor.Woman

EKAW u ∃hasFirstAuthor.Person,
ESWC u ∃hasFirstAuthor.Person, . . . }

Note that the number of the possible specializations that are generated at each step
via the refinement operator is infinite [11]. To overcome the problem, various strategies
can be employed, e.g. by limiting the length of the specializations5.

5 The length of of a concept C, len(C) can be defined inductively as:

– len(A)=len(>)=len(⊥)=1
– len(¬D)= len(D)+1
– len(D u E)= len(D t E)= len(D)+ len(E)+1
– len(∃R.D)= len(∀R.D)+1



ρ(C) =

{
{>} ∪ ρ>(C) if C = >
ρ>(C)

ρ>(C) =



∅ ifC = ⊥
{C1 t C2 t · · ·Cn|Ci ∈ MB(C)} ifC = >
{A′|A′ ∈ sh ↓ (A)}
∪{A uD|D ∈ ρB(>)} ifC = A(A ∈ NC )

{¬A′|A′ ∈ sh ↑ (A)}
∪{¬A uD|D ∈ ρB(>)} ifC = ¬A(A ∈ NC )

{∃R.E|E = arA(R), E ∈ ρA(D)}
∪{∃R.D u E|E ∈ ρB(>)}
∪{∃R′.D|R′ ∈ sh ↓ (R)} ifC = ∃R.D

{∀R.E|E = arA(R), E ∈ ρA(D)}
∪{∀R.D u E|E ∈ ρB(>)}
∪{∀R.⊥|D = A ∈ NC and sh ↓ (A) = ∅}
∪{∃R′.D|R′ ∈ sh ↓ (R)} ifC = ∀R.D

{C1 u C2 u · · · u Ci−1 uD u Ci+1 · · ·Cn|
D ∈ ρB(Ci), 1 ≤ i ≤ n}

ifC = C1 u · · · u Cn

{C1 t C2 t · · · t Ci−1 tD t Ci+1 · · ·Cn|D ∈ ρB(>), 1 ≤ i ≤ n}
∪{(C1 t C2 t · · · t Ci−1 t Ci t Ci+1 · · ·Cn) uD|
D ∈ ρB(>), 1 ≤ i ≤ n}

ifC = C1 t · · · t Cn

Fig. 3. The refinement operator available in DL-Learner. Image adapted from [11]

Heuristics for the best candidate selection The heuristics used for the concept selec-
tion aim at maximizing a purity criterion. This idea, borrowed from the algorithm for the
induction of decision trees, is used by TDT. In fact, during the induction of TDTs infor-
mation gain is the criterion used for selecting the best concept description [3]. Instead
ETDTs exploits an heuristic based on the minimization of non-specificity measure in
order to determine the concept sub-description with the most definite membership [4].
However, both the information gain and the non-specificity measure do not consider
aspects such as the complexity of the concept description or the similarity w.r.t. the
concept installed into the father node. In the latter case, adding a sub-description that
is not similar to the one installed into the father node may increase the risk that most
instances are sent along a branch, leading to an error-prone classification model, or that
a large number of missing values may be found. To penalize these concept descriptions,
we can adopt the idea proposed in [15]: introducing a regularization terms in the infor-
mation gain/non-specificity measure value. This is basically a discounting factor for the
purity-measure employed for selecting the concept. As regards the information gain, let
C and D two concepts installed into a father and a child node, the regularized version
of information gain can be computed as

Gain(C,D) = c

(
H(C,Tr)−

nl

n
H
(
D,Psl ∪ Nsl ∪ Usl

)
−
nr

n
H
(
D,Psr ∪ Nsr ∪ Usr

))
(1)

where nl (resp. nl) is the number of training individuals sent to the left (resp. right)
branch, H is the entropy of the concept adopted as a test computed over a set of indi-



viduals and c ∈ [0, 1] represents the aforementioned regularization factor. In this paper,
the regularization factor takes into account the similarity w.r.t. the concept installed into
the father node and it is computed through the Jaccard similarity between the set of the
individuals which belong to those concepts. J(C,D) = |ret.(C)∩ret.(D)|

|ret.(C)∪ret.(D)| where ret.(E)

for a given concept E is the set of individuals which belongs to E. Similarly to the case
of information gain, a regularized version of the non specificity measure can be defined.

3.3 Classification

In order to make prediction with the produced models, we consider a ternary classifica-
tion problem for assessing the membership of an individual [3, 4]. The strategy is based
on the navigation of tree structure according to the instance-check results. The algo-
rithms start from the root and follows either the left or the positive branch according
to the results of the instance check test w.r.t. the concept. The algorithms differ in the
strategies exploited for coping with the case of uncertain results w.r.t. the intermediate
tests: while the exploration of a TDT is stopped by assigning the uncertain-membership
label for the test individual, both branches departing from the node with an uncertain
result are navigated in order to reach more leaves when an ETDT is used to classify an
individual. In this case, the algorithm collects the BBAs contained into the leaves that
are subsequently pooled according to the Dubois-Prade rule [4].

Example 4 (Classification through TDTs). Given the TDT reported in Fig. 1 and a new
individual a. Assuming that for this individual the membership w.r.t. the target concept
SW is unknown but, according to the available knowledge base, it is an instance of the
concept Person and a publication in SWJ exists, the classification algorithm will follow
the most-left path of the tree and it will classify the individual as a positive instance.
Conversely, Person(a) is entailed from the knowledge base but the it cannot determine
if Person u ∃hasPublication.>(a) the classification algorithm stop the traversing of the
tree assigning the uncertain-membership value.

Example 5 (Classification through ETDTs). The model proposed in Fig. 2 can be used
for classifying an individual a that is an instance of the concept Person. The traversing
process checks the membership w.r.t. the intermediate concept description.If neither of
the encountered tests is satisfied and the individual is a instance of their complement
concept, the algorithm follows the most-right path collecting the BBA of the single leaf
and then, computing Bel function and assigning the class that corresponds to the hy-
pothesis with the largest belief value. It is straightforward to note that the classification
procedure will decide in favor of the negative membership. On the other hand, if an in-
termediate test with an uncertain result is encountered, e.g. it cannot be determined if a
is an instance of either the concept PersonuhasPublication.> or its complement. In this
case, the algorithm explores both the left sub-tree, whose root contains the concept de-
scription Person u hasPublication.SAC, and the right branch, whose root contains the
concept ¬(Person u hasPublication.SAC) u hasPublication.ESWC. Following these
branches, the algorithm can collect up to 4 BBAs (if there are further uncertain test
results) that are combined according to the Dubois-Prade rule



Table 1. Ontologies employed in the experiments

Ontology Expressiv. # Classes # Roles # Individ.

Lymph AL 53 0 148
NTN SHIF(D) 47 27 676
MUTAGENESIS AL(D) 86 5 14145
CARCINOGENESIS ALC(D) 142 4 22372

4 Empirical Evaluation

In this section we report the settings and the outcomes of an empirical evaluation,
where we compared TDTs and ETDTs w.r.t. to other methods implemented in DL-
LEARNER [7].

4.1 Setup

In our experiments, we considered various Web ontologies, whose dimensions and ex-
pressiveness are reported in Tab.1. LYMPH represents an OWL porting of the Lymphog-
raphy dataset, which is available at the UCI repository (http://archive.ics.
uci.edu/ml/). Instead, NTN is an ontology concerning the characters of the New
Testament. MUTAGENESIS and CARCINOGENESIS are the porting of the well known
datasets typically employed to test ILP methods.

For each ontology, we considered the learning problems available with the DL-
LEARNER release (http://www.dllearner.org). Specifically, for LYMPH, we
considered the learning problems contained in lymphography Class2. conf. Instead, for
NTN the learning problem aims at discovering if the ethnicity of an individual is Jew-
ish. Finally, for MUTAGENESIS and CARCINOGENESIS the tasks aim at predicting if
a chemical compound is mutagenic and carcinogenic, respectively. In the evaluation,
TDTs and ETDTs have been compared against CELOE and ELTL DISJUNCTIVE. For
the induction of trees we tested the original models against the new versions endowed
with further refinement operators and the Jaccard similarity as a regularization term. As
regards the refinement operators, we resort to both the original operator employed in
[3] and [4], the RHO operator available in DL-LEARNER with a maximum length of 2.
We used a 10-fold cross validation for assessing the performance of the algorithms.

The performance has been compared in terms of F-measure and other metrics that
take into account the Open World Assumption [3, 4], which are based on a compar-
ison between inductive classification and the answer of a reasoner (PELLET: http:
//clarkparsia.com/pellet). The metrics are: 1) match (M), i.e. the rate of the
test examples for which the inductive model and a reasoner predict the same member-
ship (i.e. +1 vs. + 1, −1 vs. − 1, 0 vs. 0); 2) commission(C), i.e. the rate of the test
examples for which predictions are opposite (i.e. +1 vs. − 1, −1 vs. +1); 3) omission
(O), i.e. the rate of test examples for which the inductive method cannot determine a
definite membership (−1 or +1) while the reasoner is able to do it; 4) induction (I),
i.e. rate of test examples where the inductive method can predict a definite membership
while it is not logically derivable.



Table 2. Results of the experiments

Ontology Index TDT ETDT
CELOE ELTLoriginal regularized+ rho original regularized+ rho

Lymph

F1 18.00 ± 33.27 100.00 ± 00.00 63.56 ± 22.38 70.76 ± 01.55 87.18 ± 08.29 100.00 ± 00.00
M% 17.00 ± 19.15 54.73 ± 01.87 53.52 ± 03.87 54.76 ± 01.87 52.00 ± 03.60 54.77 ± 01.87
C% 00.00 ± 00.00 00.00 ± 00.00 46.48 ± 03.87 45.23 ± 01.87 12.91 ± 07.71 00.00 ± 00.00
O% 83.00 ± 19.15 45.23 ± 01.87 00.00 ± 00.00 00.00 ± 00.00 35.08 ± 05.78 45.23 ± 01.87
I% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

NTN

F1 30.00 ± 48.31 100.00 ± 00.00 40.00 ± 51.64 100.00 ± 00.00 100.00 ± 00.00 37.95 ± 05.97
M% 29.47 ± 47.48 99.47 ± 01.66 85.59 ± 12.96 100.00 ± 00.00 99.47 ± 01.66 22.85 ± 06.42
C% 00.00 ± 00.00 00.00 ± 00.00 14.41 ± 12.96 00.00 ± 00.00 00.00 ± 00.00 69.27 ± 18.87
O% 70.53 ± 47.48 00.53 ± 01.66 00.00 ± 00.00 00.00 ± 00.00 00.53 ± 01.66 07.90 ± 24.96
I% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

MUTAGENESIS

F1 00.00 ± 00.00 70.43 ± 00.02 70.43 ± 00.17 70.43 ± 00.17 94.00 ± 03.85 70.43 ± 00.17
M% 00.00 ± 00.00 54.36 ± 00.20 54.36 ± 00.20 54.36 ± 00.20 93.03 ± 04.53 54.36 ± 00.20
C% 00.00 ± 00.00 45.64 ± 00.20 45.64 ± 00.20 45.64 ± 00.20 06.97 ± 04.53 45.64 ± 00.20
O% 100.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00
I% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

CARCINOGENESIS

F1 00.00 ± 00.00 70.51 ± 03.10 70.46 ± 03.09 70.51 ± 03.10 71.48 ± 08.34 66.26 ± 13.26
M% 00.00 ± 00.00 54.36 ± 00.20 54.47 ± 03.70 54.36 ± 00.20 63.42 ± 10.34 49.23 ± 14.82
C% 00.00 ± 00.00 45.64 ± 00.20 45.53 ± 03.70 45.64 ± 00.20 36.58 ± 10.34 40.58 ± 14.87
O% 100.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 09.09 ± 28.75
I% 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00

4.2 Outcomes

Tab. 2 reports the results of the experiments (the improvements due to the new refine-
ment operators are reported by using bold font style). In general, when the refinement
operator proposed in [3, 4] and TDTs are considered in the experiments, we observed
a large omission rate for each ontology. This results can be explained by the difficulty
of TDTs to recognize negative instances, likely due to the lack of useful disjointness
axioms and the Open World Assumption.

Concerning the experiments with LYMPH ontology, we noticed an improvement
w.r.t. the original version of the learning algorithms when we resort to the RHO operator
and the regularizer term. The improvement of the match rate and the F-measure in
the case of TDTs were really prominent (these improvements were around 28% and
82%, respectively). In this case the models were competitive w.r.t. the concepts induced
through CELOE and ELTL DISJUNCTIVE. Thanks to the new refinement operator, each
tree contained concept descriptions that allowed to discern positive instances and to
recognize the negative examples. In addition, we noticed that for this learning problem,
a larger number of positive instances were available and this could affect the quality of
the trees.

As regards the NTN ontology and the employment of the two refinement operators,
the TDTs and ETDTs improved the performance w.r.t. the original versions of the mode
only thanks to the RHO operator and the regularizer term. Also, in this case various miss-
ing values were found, like the experiments with LYMPH, and the uncertain membership
was assigned to test individuals. Consequently, the F-measure was very low: it was only
30%. On the other hand, resorting to the ETDTs with the original refinement operator
improved the F-measure, which was 40% , and partially mitigated the number of omis-
sion cases thanks to the strategy employed for dealing with the missing values. In this
case a large number of negative instances have been predicted. With the RHO operator
and the regularizer, we observed a significant improvement of the match rate for TDTs,
around 70%. For ETDTs the increase was more limited, but it was still good enough:



it was about of 14%. The improvement in terms of F-measure was very large: it was
around 70% for TDTs and 60% for ETDTs. This result can be explained by the possi-
bility to set various parameters for RHO operator in order to be fitted w.r.t. the specific
learning problem, for instance by setting opportunely the use of data properties. Thanks
to the integration of the refinement operator the results are better than the ones obtained
by exploiting ELTL DISJUNCTIVE, which induced very poor concept descriptions, and
similar to the ones obtained by resorting to CELOE. Finally, in the case of MUTAGE-
NESIS and CARCINOGENESIS ontology, we observed a bad result for the experiments
with the original version of TDTs: all test individuals were classified as having an un-
certain membership. This was likely due to the expressiveness of the ontology, which
is really limited for the refinement operator employed in this experiment. As explained
in Sect. 2, the latter considers only concept names and existential or universal restric-
tion obtained from roles that can be found in a knowledge base. But the expressiveness
of MUTAGENESIS did not allowed to find this kind of candidate concepts. Besides, no
disjointness axiom was found in this ontology. This limit of TDTs is broader when we
compared their predictiveness with the one of the original ETDTs: these models were
able to reduce the number of omission cases and improve the F-measure. With the RHO
operator, the performance of TDTs improved significantly. In fact, the match rate and
the F-measure are comparable to the ones obtained via ETDTs, by applying both the
original refinement operator and RHO. Similarly to the case of NTN, the performance
is better than or as well as the ones obtained through ELTL DISJUNCTIVE although
it was worse than the performance of CELOE. This may be due to the fact that CELOE
is an accuracy-driven method for inducing concepts which exploits the most promising
description for classifying individuals. Conversely, the greedy algorithm employed for
growing trees could yield sub-optimal solutions.

5 Conclusions and Extensions

In this work, we integrated the refinements operators available in DL-Learner into the
learning algorithms for inducing Terminological Decision Trees and Evidential Termi-
nological Decision Trees. We also proposed to modify the heuristic for selecting the
best concept in order to take into account the similarity between a specialization and
the concept installed into the father node. An empirical evaluation showed that by mod-
ifying the learning algorithms, the resulting models have better performance w.r.t. the
original version. Besides the new models can fit with a lower expressivity than the one
considered by the original refinement operator. Unfortunately, for some learning prob-
lems, the tree models did not outperform other methods proposed in the literature. This
work is still preliminary and it can be extended along various directions. Firstly, we can
extend the comparison by exploiting further refinement operators and further regular-
izer terms. In addition, we plan to extend the empirical evaluation by considering also
further ontologies and further learning problems in order to investigate the correlation
existing between the learning algorithms, the refinement operators and the expressive-
ness of the ontologies considered in the experiments.



Acknowledgements

This work fulfills the objectives of the PON 02005633489339 project “Puglia@Service
- Internet-based Service Engineering enabling Smart Territory structural development”
funded by the Italian Ministry of University and Research (MIUR).

References
1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-

scription Logic Handbook. 2nd edn. Cambridge University Press (2007)
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