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DL-Learner is a machine learning framework for OWL and description
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1 What is DL-Learner?

1 What is DL-Learner?

DL-Learner is an open source framework for (supervised) machine learning in OWL and
Description Logics (from instance data). We further detail what this means:
OWL stands for �Web Ontology Language�. In 2004, it became the W3C1 standard

ontology language2. As such it is one of the fundamental building blocks in the Semantic
Web and has been used in several scenarios on and o� the web. OWL is based on
description logics (DLs), which are a family of knowledge representation languages. We
refer to [Baader et al., 2007] for an introduction to description logics. Since OWL
formally builds on description logics, we can apply DL-Learner to knowledge bases in
OWL or a variety of description languages.
Machine Learning is a sub�eld of Arti�cial Intelligence, which focuses on detecting

patterns, rules, models etc. in data. Often, this involves a training process on the
input data. In Supervised learning, this data is labelled, i.e. we are given a number
of input-output mappings. Those mappings are also called examples. If the output is
binary, then we distinguish positive and negative examples. DL-Learner as a framework
is not restricted to supervised learning, but all algorithms currently build into it, are
supervised.
In the most common scenario we consider, we have a background knowledge base in

OWL/DLs and additionally, we are given positive and negative examples. Each example
is an individual in our knowledge base. The goal is to �nd an OWL class expression3 such
that all/many of the positive examples are instances of this expression and none/few
of the negative examples are instances of it. The primary purpose of learning is to
�nd a class expression, which can classify unseen individuals (i.e. not belonging to the
examples) correctly. It is also important that the obtained class expression is easy to
understand for a domain expert. We call these criteria accuracy and readability.
As an example, consider the problem to �nd out whether a chemical compound can

cause cancer4. In this case, the background knowledge contains information about chem-
ical compounds in general and certain concrete compounds we are interested in. The
positive examples are those compounds causing cancer, whereas the negative examples
are those compounds not causing cancer. The prediction for the examples has been
obtained from experiments and long-term research trials in this case. Of course, all
examples have to be described in the considered background knowledge. A learning
algorithm can now derive a class expression from examples and background knowledge,
e.g. such a class expression in natural language could be �chemical compounds contain-
ing a phosphorus atom�. (Of course, in practice the expression will be more complex to
obtain a reasonable accuracy.) Using this class expression, we can now classify unseen
chemical compounds.
Please note that the latest versions of DL-Learner are not limited to OWL class

expressions anymore. There is also preliminary support for learning simple SPARQL

1http://www.w3.org
2http://www.w3.org/2004/OWL/
3http://www.w3.org/TR/owl2-syntax/#Class_Expressions
4see http://dl-learner.org/community/Carcinogenesis for a more detailed description
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2 Getting Started

queries [Lehmann and Bühmann, 2011]. Preliminary support for fuzzy OWL class ex-
pressions [Iglesias and Lehmann, 2011] is also included, but requires setting up a fuzzy
OWL reasoner. Please contact us via the DL-Learner discussion list if you plan to do
this.

2 Getting Started

DL-Learner is written in Java, i.e. it can be used on almost all platforms. Currently, Java
8 or higher is required. To install the latest release, please visit the download page5 and
extract the �le on your harddisk. In the bin directory, you will notice several executables.
Those �les ending with bat are Windows executables, whereas the corresponding �les
without �le extension are the Non-Windows (e.g. Linux, Mac) executables. To test
whether DL-Learner works, please run the following on the command line depending on
your operating system:

bin/cli examples/father.conf (Non-Windows Operating System)

bin/cli.bat examples\father.conf (Windows Operating System)

Conf �les, e.g. examples/father.conf in this case, describe the learning problem and
specify which algorithm you want to use to solve it. In the simplest case they just say
where to �nd the background knowledge to use (in the OWL �le examples/father.owl
in this case) and the positive and negative examples. When running the above command,
you should get something similar to the following:

1 DL-Learner command line interface

2 Initializing Component "OWL File "... OK (1ms)

3 Initializing Component "closed world reasoner "... OK (325ms)

4 Initializing Component "PosNegLPStandard "... OK (0ms)

5 Initializing Component "CELOE "... OK (9ms)

6 Running algorithm instance "alg" (CELOE)

7 more accurate (50.00%) class expression found: Thing

8 more accurate (83.33%) class expression found: http :// example.com/father#male

9 more accurate (100.00%) class expression found: (http :// example.com/father#male and ê

http :// example.com/father#hasChild some Thing)

10 Algorithm terminated successfully (time: 1s 0ms, 13380 descriptions tested , 7727 ê

nodes in the search tree).

11

12 number of retrievals: 6

13 retrieval reasoning time: 0ms ( 0ms per retrieval)

14 number of instance checks: 56442 (0 multiple)

15 instance check reasoning time: 163ms ( 0ms per instance check)

16 (complex) subsumption checks: 4 (0 multiple)

17 subsumption reasoning time: 9ms ( 2ms per subsumption check)

18 overall reasoning time: 172ms

19

20 solutions:

21 1: (http :// example.com/father#male and http :// example.com/father#hasChild some Thing) ê

(pred. acc.: 100.00% , F-measure: 100.00%)

22 2: ((not http :// example.com/father#female) and http :// example.com/father#hasChild ê

some Thing) (pred. acc.: 100.00% , F-measure: 100.00%)

23 3: (http :// example.com/father#male and (http :// example.com/father#female or ê

http :// example.com/father#hasChild some Thing)) (pred. acc.: 100.00% , F-measure: ê

100.00%)

5https://github.com/AKSW/DL-Learner/releases
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3 DL-Learner Architecture

24 4: (http :// example.com/father#male and http :// example.com/father#hasChild some ê

(http :// example.com/father#female or http :// example.com/father#male)) (pred. ê

acc.: 100.00% , F-measure: 100.00%)

25 5: (http :// example.com/father#male and (not http :// example.com/father#female) and ê

http :// example.com/father#hasChild some Thing) (pred. acc.: 100.00% , F-measure: ê

100.00%)

26 6: (http :// example.com/father#hasChild some Thing and (http :// example.com/father#male ê

or (not http :// example.com/father#female))) (pred. acc.: 100.00% , F-measure: ê

100.00%)

27 7: ((not http :// example.com/father#female) and (http :// example.com/father#female or ê

http :// example.com/father#hasChild some Thing)) (pred. acc.: 100.00% , F-measure: ê

100.00%)

28 8: ((not http :// example.com/father#female) and http :// example.com/father#hasChild ê

some (http :// example.com/father#female or http :// example.com/father#male)) (pred. ê

acc.: 100.00% , F-measure: 100.00%)

29 9: (http :// example.com/father#male and http :// example.com/father#hasChild some ê

(http :// example.com/father#male or (not http :// example.com/father#male))) (pred. ê

acc.: 100.00% , F-measure: 100.00%)

30 10: (http :// example.com/father#male and http :// example.com/father#hasChild some ê

(http :// example.com/father#female or (not http :// example.com/father#female))) ê

(pred. acc.: 100.00% , F-measure: 100.00%)

The �rst part of the output (line 1-5) tells you which components are used (more on
this in Section 4). In the second part (line 6-10) you see output coming from the used
learning algorithm, i.e. it can print information while running (�more accurate (83,33%)
class expression found�). When the algorithm �nished some overall runtime statistics are
presented (line 12-18) and the �nal results are displayed in Manchester OWL Syntax6.
There are several solutions ordered with the most promising one in the �rst position
(male and hasChild some Thing).

3 DL-Learner Architecture

DL-Learner (see also [Lehmann, 2009]) consists of core functionality, which provides
Machine Learning algorithms for solving the learning problem, support for di�erent
knowledge base formats, an OWL library, and reasoner interfaces. There are several
interfaces for accessing this functionality, a couple of tools which use the DL-Learner
algorithms, and a set of convenience scripts.
To be �exible in integrating new learning algorithms, new kinds of learning problems,

new knowledge bases, and new reasoner implementations, DL-Learner uses a component
based model. Adding a component can be done by implementing the appropriate Java
interface and adding appropriate annotations (more on that in Section 7).
There are �ve common types of components (knowledge source, reasoning service,

learning problem, learning algorithm, re�nement operator). DL-Learner is not restricted
to those types, i.e. others can easily be added, but we limit ourselves to those �ve to make
this manual easier to read. For each type, there are several implemented components
and each component can have its own con�guration options as illustrated in Figure 1.
Con�guration options can be used to change parameters/settings of a component. In
Section 4, we describe the components in DL-Learner and their con�guration options.

6http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
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4 DL-Learner Components
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Figure 1: The architecture of DL-Learner is based on di�erent component types, which
can each have their own con�guration options.

4 DL-Learner Components

In this part, we describe concrete components currently implemented in DL-Learner.
Each of the subsections contains a list of components according to the type spec-
i�ed in the subsection heading. Note that this does not constitute a full descrip-
tion, i.e. we omit some components and many con�guration options. The purpose
of the manual is to obtain a general understanding of the implemented components.
A full list, which is generated automatically from the source code, can be found in
interfaces/doc/configOptions.html including the default values for all options and
their usage in conf �les. The �le is also available online at http://htmlpreview.

github.io/?https://github.com/AKSW/DL-Learner/blob/master/interfaces/doc/

configOptions.html.

4.1 Knowledge Sources

The following contains some knowledge sources implemented in DL-Learner. To give an
example, this is how a local OWL �le can be declared as knowlege source in a conf �le:

ks.type = "OWL File"

ks.fileName = "father.owl"
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4 DL-Learner Components

OWL File DL-Learner supports OWL �les in di�erent formats, e.g. RDF/XML or N-
Triples. If there is a standard OWL format, you want to use, but is not supported
by DL-Learner please let us know. We use the OWL API for parsing, so all formats
supported by it can be used7.

KB File KB �les are an internal non-standardised knowledge representation format,
which corresponds to description logic syntax except that the special symbols have
been replaced by ASCII strings, e.g. AND instead of [. You can �nd several KB
�les in the examples folder. A description of the syntax is available online8. If in
doubt, please use the standard OWL syntax formats.

SPARQL endpoint fragment DL-Learner allows to use SPARQL endpoints as back-
ground knowledge source, which enables the incorporation of parts from very large
knowledge bases, e.g. DBpedia[Auer et al., 2008], in DL-Learner. This works by
using a set of start instances, which usually correspond to the examples in a learn-
ing problem, and then retrieving knowledge about these instances via SPARQL
queries. The obtained knowledge base fragment can be converted to OWL and
consumed by a reasoner later since it is now su�ciently small to be processed in
reasonable time. Please see [Hellmann et al., 2009] for details about the knowledge
fragment extraction algorithm. Some options of the SPARQL component are:

• instances: Set of individuals to use for starting the knowledge fragment ex-
traction. Example use in conf �le:

sparql.type = "SPARQL endpoint fragment"

sparql.instances = {"http://dbpedia.org/resource/Matt_Stone",

"http://dbpedia.org/resource/Sarah_Silverman"}

• recursionDepth: Maximum distance of an extracted individual from a start
individual. This in�uences the size of the extracted fragment and depends on
the maximum property depth you want the learned class expression to have.
Example use in conf �le: sparql.recursionDepth = 2.

• saveExtractedFragment: Speci�es whether the extracted ontology is written
to a �le or not. If set to true, then the OWL �le is written to the cache dir.
Example usage: sparql.saveExtractedFragment = true

Many further options allow to modify the extracted fragment on the �y or �ne-tune
the extraction process. The extraction can be started separately by running and
modifying org.dllearner.test.SparqlExtractionTest. The collected ontology
will be saved in the DL-Learner directory.

SPARQL endpoint Algorithms which work directly on SPARQL endpoints (without
fragment extraction) can make use of the SPARQL endpoint component. The
endpoint will then be queried for each algorithm task as required.

7 for a list see http://owlapi.sourceforge.net
8https://raw.githubusercontent.com/AKSW/DL-Learner/master/interfaces/doc/

kbFileSyntax.txt
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4 DL-Learner Components

4.2 Reasoner Components

Several reasoner components are implemented, which can be interfaces to concrete rea-
soner implementations. Note that OWLlink reasoners can be attached via the OWL
API interface.

OWL API The OWL API reasoner interface can be used in conjunction with the Pellet,
FaCT++, HermiT and OWLlink reasoners. The only option allows to switch
between them:

• reasonerImplementation: Selects the desired reasoner. By default, Pellet is
used. Usage: owlAPIReasoner.reasonerImplementation = "fact". Pel-
let, FaCT++ and HermiT are already included in DL-Learner. Note that for
FaCT++, you need to add -Djava.library.path=lib/fact/64bit (or 32bit) to
the Java command. You can also use an external OWLlink reasoner by setting
the reasoner type to owllink. You can then use the option owlLinkURL to
specify the URL of the OWLlink reasoner (http://localhost:8080/ by default).

SPARQL Reasoner Combined with the SPARQL endpoint or an OWL �le as knowl-
edge sources the SPARQL reasoner [Bin et al., 2016] answers reasoning requests
directly via generated SPARQL queries. This allows handling huge knowledge
sources which do not �t into memory but requires that entailments are already
materialized.

Closed World Reasoner Instance checks, i.e. testing whether an individual is instance
of a class, is the major reasoner task in many learning algorithms. This reasoner is
a self-development of the DL-Learner project. It remedies some problems related
to Machine Learning and the Open World Assumption in OWL and therefore
is not correct w.r.t. OWL semantics. (See [Badea and Nienhuys-Cheng, 2000]
Section 4 for an explanation.) Furthermore, it provides an improved performance
for instance checks by precomputing some inferences and keeping them in memory.
The closed world reasoner is build on top of any other reasoner component in DL-
Learner.

4.3 Learning Problems

In the introductory Sections 1 and 2, we described a speci�c learning problem where
positive and negative examples are given. In practice di�erent variations of similar
problems occur.

Positive and Negative Examples Let the name of the background ontology beO. The
goal in this learning problem is to �nd an OWL class expression C such that
all/many positive examples are instances of C w.r.t. O and none/few negative
examples are instances of C w.r.t. O. As explained previously, C should be learned
such that it generalises to unseen individuals and is readable. The important
con�guration options of this component are obviously the positive and negative

8



4 DL-Learner Components

examples, which you can specify via, e.g. posNegLPStandard.positiveExamples =

{...}.

Positive Examples This learning problem is similar to the one before, but without neg-
ative examples. In this case, it is desirable to �nd a class expression which closely
�ts the positive examples while still generalising su�ciently well. For instance,
you usually do not want to have owl:Thing as a solution for this problem, but
neither do you want to have an enumeration of all examples.

Class Learning In class learning, you are given an existing class A within your ontology
O and want to describe it. It is similar to the previous problem in that you can use
the instances of the class as positive examples. However, there are some di�erences,
e.g. you do not want to have A itself as a proposed solution of the problem, and
since this is an ontology engineering task, the focus on short and readable class
expressions is stronger than for the two problems mentioned before. The learner
can also take advantage of existing knowledge about the class to describe.

4.4 Learning Algorithms

The implemented algorithms vary from very simple (and usually inappropriate) algo-
rithms to sophisticated ones. Learning algorithms can make use of a re�nement operator
(see Sec. 4.5) to traverse the search space.

OWL Class Expression Learner (OCEL) The general idea of the OCEL algorithm is
to build a search tree based on a re�nement operator and making use of a heuristic
guiding the traversal of the search space. While the re�nement operator de�nes
how new candidate concepts may be derived from concepts already in the search
tree, the heuristic can be con�gured to �nd `good' candidates to look at (e.g. w.r.t.
the concept length, its speci�city and the number of covered examples).

The OCEL algorithm supports double datatypes and hasValue restrictions (which
again can be turned on or o� as desired). It also includes explicit noise handling
through the noisePercentage option. More than 30 options can be set to control
its behaviour.

Class Expression Learning for Ontology Engineering (CELOE) Currently CELOE
is the best class learning algorithm available within DL-Learner. It uses the same
re�nement operator as OCEL, but a completely di�erent heuristics. Furthermore,
it guarantees that the returned class expressions are minimal in the sense that one
cannot remove parts of them without getting an inequivalent expression. Further-
more, it makes use of existing background knowledge in coverage checks. Statistical
methods are used to improve the e�ciency of the algorithm such that it scales to
large knowledge bases. While it was originally designed for ontology engineering,
it can also be used for other learning problems and might even be superior to the
other algorithms in many cases. Note that many con�guration options of OCEL
were dropped for the sake of simplicity, but may be introduced if needed.

9



5 Enrichment using DL-Learner

EL Tree Learner (ELTL) This algorithm has EL as its target language, i.e. is special-
ized for this relatively simple language. There are two algorithms: el learns EL
concepts and disjunctiveEL learns disjunctions of EL concepts.

Inductive Statistical Learning of Expressions (ISLE) The ISLE approach [Bühmann
et al., 2014] is an extension of the ELTL algorithm, which can take standard knowl-
edge sources (see Sec. 4.1) and textual evidence into account. An input corpus
should contain textual descriptions of classes which support the generation on an
ontology in an ontology learning setting.

4.5 Re�nement Operators

Re�nement operators de�ne a mapping from a given input concept description to a set
of derived, or re�ned concept descriptions. In general there are to kinds of re�nement
operators: 1) upward re�nement operators, returning re�ned concept descriptions that
are more general than the input concept description, and 2) downward re�nement op-
erators returning concept descriptions that are more speci�c than the input concept
description. The speci�city/generality here refers to the concept hierarchy in terms of
subclass-of relations of concept descriptions.
Besides this, re�nement operators di�er in their expressiveness, i.e. the types of DL

constructs they support. As an example, the rho Rho (downward) re�nement operator
can be con�gured to create re�nements that contain cardinality restrictions, which is
not supported by the eldown EL Downward re�nement operator.
A list of available re�nement operators is given in the components and con�guration

settings document.

5 Enrichment using DL-Learner

Enrichment is usually a semi-automatic process, which adds information to an existing
knowledge base. Enrichment suggestions generated by an algorithm should be reviewed
by a knowledge engineer who can then decide to accept or reject it. Because of this,
there is a need for serialising enrichment suggestions such that the generation of them is
independent of the process of accepting or rejecting them. Since all enrichment sugges-
tions are OWL axioms, they could simply be written in an RDF or OWL �le. However,
this might be insu�cient, because we lose a lot of metadata this way, which could
be relevant for the knowledge engineer. For this reason, DL-Learner uses an enrich-
ment ontology, which is partially building on related e�orts in [Palma et al., 2009] and
http://vocab.org/changeset/schema.html. Such an interchange format is also rel-
evant, because the process of generating enrichments for all schema elements in very
large knowledge bases will often take several hours to complete. Furthermore, it may be
desirable to include su�cient metadata to be able to reproduce algorithm runs for cre-
ating enrichment suggestions. We brie�y describe the main elements of the enrichment
ontology.

10
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5 Enrichment using DL-Learner

Classes

Suggestion Base class for enrichment suggestions.

AddSuggestion Contains suggestions for adding axioms to an ontology.

RemoveSuggestion Contains suggestions for removing axioms from an ontology.

SuggestionSet This class is used to group several suggestions with similar characteris-
tics, e.g. those generated by the same run of an algorithm.

Algorithm The class containing all algorithms.

Creation Contains all processes of creating a suggestion.

Manual Manual enrichment suggestion processes, e.g. a person suggesting a par-
ticular change to an ontology.

Automatic Automatic and semi-automatic enrichment suggestions.

AlgorithmRun Contains runs of a particular algorithm.

Parameter Contains parameters of an algorithm.

Change Actually performed changes in an ontology, e.g. an accepted suggestion could
become an instance of Change. This can be used to track which changes have
already been performed as result of the enrichment process.

ChangeSet A set of instances of Change.

Object Properties

hasSuggestion Links a set of suggestions to its elements.

Domain: SuggestionSet

Range: Suggestion

hasAxiom Connects a suggestion to the axiom contained in it. Currently, this axiom is
stored as Manchester OWL Syntax text string.

Domain: Suggestion

hasParameter Links to a parameter of an algorithm.

Domain: AlgorithmRun

Range: Parameter

creator Speci�es who or what has created a set of enrichment suggestions.

Domain: SuggestionSet

Range: Creation

usedAlgorithm Speci�es the used algorithm

11
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Domain: AlgorithmRun

Range: Algorithm

hasInput Can be used specify input resources of an algorithm, for instance SPARQL
endpoints.

Domain: AlgorithmRun

Data Properties

con�dence The con�dence with which a Creator made a suggestion. The con�dence is
value between 0 and 1 with 0 indicating no con�dence and 1 indicating absolute
con�dence.

Domain: Suggestion

Range: xsd:double

explanation A textual explanation why a suggestion was given. This could be a remark
made by a person or a summary of statistical analysis results of an algorithm.

Domain: Suggestion

parameterName The name of a parameter of an algorithm.

Domain: Parameter

parameterValue The value of a parameter of an algorithm.

Domain: Parameter

timestamp Timestamp of the start of automatic process.

Domain: Automatic

version The version of the used algorithm.

Domain: Algorithm

To run the above enrichment algorithms on a SPARQL endpoint, you can use the
provided enrichment script of DL-Learner. It is a commandline interface, which you
can start with �./enrichment� in Unix systems and �enrichment.bat� Windows systems.
Figure 2 shows the help screen, which is printed when running enrichment -?. We will
brie�y explain the options:
-e and -g are used to specify the used endpoint and optionally a graph in this endpoint.
-r is used to specify the resource (property or class), which should be enriched. The

system automatically determines whether this resource is a class, object property or
data property and runs the corresponding algorithms. If this parameter is omitted,
enrichment for the complete knowledge base is performed, i.e. the system loops over all
classes and properties in the SPARQL endpoint and generates enrichments.

12



5 Enrichment using DL-Learner

The -f switch can be used to control the format of the output. By default, the
suggestions are just printed to the console, but they can also be saved in a �le in
combination with the -o option, e.g. using the previously described enrichment ontology.
This is useful for decoupling the enrichment suggestion generation process from the
actual presentation of those suggestions to a knowledge engineer.
The -i switch allows to turn inference on or o�. If it is turned on, schema knowledge

is loaded into a reasoner in the �rst step. Powerful reasoning capabilities may improve
the quality of suggestions, in particular for those axioms, which rely on knowing the
class hierarchy of the knowledge base, e.g. domain and range axioms.
-t allows to specify a threshold for enrichment suggestions, i.e. suggestions with a

lower score will be omitted.

Option Description

------ -----------

-?, -h, --help Show help.

-e, --endpoint <URL> SPARQL endpoint URL to be used.

-f, --format Format of the generated output (plain,

rdf/xml, turtle, n-triples).

(default: plain)

-g, --graph [URI] URI of default graph for queries on

SPARQL endpoint.

-i, --inference [Boolean] Specifies whether to use inference. If

yes, the schema will be loaded into

a reasoner and used for computing

the scores. (default: true)

-o, --output [File] Specify a file where the output can be

written.

-r, --resource [URI] The resource for which enrichment

axioms should be suggested.

-t, --threshold [Double] Confidence threshold for suggestions.

Set it to a value between 0 and 1.

(default: 0.7)

Additional explanations: The resource specified should be a class,

object property or data property. DL-Learner will try to automatically

detect its type. If no resource is specified, DL-Learner will generate

enrichment suggestions for all detected classes and properties in the

given endpoint and graph. This can take several hours.

Figure 2: Depiction of the help screen of the enrichment script.
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Examples

Obtain enrichment suggestions for the currency property in DBpedia:

-e http://dbpedia.org/sparql -g http://dbpedia.org

-r http://dbpedia.org/ontology/currency

Write the enrichments in Turtle syntax in a �le using the enrichment ontology:

-e http://dbpedia.org/sparql -g http://dbpedia.org

-r http://dbpedia.org/ontology/currency -o results.ttl

-f turtle

Do the same task with an increased threshold and without inference

-e http://dbpedia.org/sparql -g http://dbpedia.org

-r http://dbpedia.org/ontology/currency -o results.ttl

-f turtle -t 0.9 -i false

Generate all enrichments for DBpedia (will take several hours to complete):

-e http://dbpedia.org/sparql -g http://dbpedia.org

6 DL-Learner Interfaces

One interface you have already used in Section 2 is the command line. The main exe-
cutable, which can be used for starting DL-Learner on the commandline is cli which
takes a conf �le as argument. There are a lot of conf �les available in the /examples

directory, which you can use a base for your own experiments.
Another means to access DL-Learner, in particular for ontology engineering, is to use

the OntoWiki and Protégé plugins. The OntoWiki plugin is not o�cially released yet,
but can be used in the SVN version of OntoWiki. The Protégé 5 plugin can be installed
either by downloading it from the DL-Learner download page or directly within Protégé
4 by clicking on �File�, �Preferences�, �Plugins�, �Check for Downloads� now and selecting
the DL-Learner plugin. For more information and a screencast see the Protégé plugin
wiki page 9.

7 Extending DL-Learner

DL-Learner is open source and component based. If you want to develop a speci�c part
or extension of a class expression learning algorithm for OWL, then you are invited to use
DL-Learner as a base. This allows you to focus on the part you want to implement while
being able to use DL-Learner as a library and access it through one of the interfaces.

9http://dl-learner.org/community/protege-plugin/
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7 Extending DL-Learner

If you want to create a new component, then you �rst have to decide on the type of
your component. To implement a concrete component, you can implement one of the
following interfaces (list is incomplete):

• org.dllearner.core.KnowledgeSource

• org.dllearner.core.ReasonerComponent

• org.dllearner.core.LearningProblem

• org.dllearner.core.LearningAlgorithm

That is su�cient for using your component programmatically in combination with
existing DL-Learner components. If your class name is org.example.TestAlgorithm,
then you can instantiate your class in a conf �le via:

c.type = "org.example.TestAlgorithm"

As you have probably seen by now in various conf �les, DL-Learner allows to con�gure
components. This is done via standard Java Beans. If you want to create a conf option
testOption, you just need to create a variable with getters and setters in your code:

public class TestAlgorithm implements LearningAlgorithm {

private double testOption = 0.0;

[...]

public double getTestOption() {

return testOption;

}

public void setTestOption(double testOption) {

this.testOption = testOption;

}

}

That would be su�cient to include your components in conf �les:

c.type = "org.example.TestAlgorithm"

c.testOption = 0.3

In your code, you should have an empty default constructor and an init() method
(as required by the Component interface). The default constructor will be called �rst,
followed by setter methods and then the init() method. This is a standard Java Beans
approach. In summary, you need to the following:
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7 Extending DL-Learner

• implement an appropriate DL-Learner interface for what you want to do

• add variables for all con�g options as well as getters and setters for them

• if you implement a constructor, please also add a default constructor with an empty
set of arguments

By only requiring those few steps, we want to make adding further components to
DL-Learner as lightweight as possible. If you are familiar with the Spring framework10,
then it is helpful to know that conf �les are just an abbreviated syntax for Spring XML
con�gurations. You can use all powerful features of Spring in your code, which we do
not describe in full detail here.
If you are a DL-Learner developer and want to properly document your component,

you should do some further steps:

• add an annotation for your class

• add annotations for all con�guration options

An example of an annotated class could look as follows:

@ComponentAnn(name="Test Algorithm", shortName="ta", version=0.1,

description="My first experiment.")

public class TestAlgorithm implements LearningAlgorithm { ...

@ConfigOption(defaultValue="0.0",

description="The option allows to control xyz.")

private double testOption = 0.0;

[...]

public double getTestOption() {

return testOption;

}

public void setTestOption(double testOption) {

this.testOption = testOption;

}

}

The @ComponentAnn annotation allow to mark classes as DL-Learner components.
Similarly, the @ConfigOption annotations marks variables as con�guration options.
That should be those variables, which you want the user to be able to con�gure and

10http://www.springsource.org
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8 General Information

play with. A bene�t of adding the extra metadata provided by the annotations is that
the component will appear in documentation pages11. In general, they provide users of
your component with useful information.
This quick introduction only serves as an entry point to get you started. For more

detailed questions about how to extend DL-Learner, please drop us a message in the
DL-Learner mailing list.

8 General Information

• Homepage: http://dl-learner.org

• GitHub project page: https://github.com/AKSW/DL-Learner

• Tracker (bugs, features): https://github.com/AKSW/DL-Learner/issues

• Mailing Lists: http://sourceforge.net/p/dl-learner/mailman/

• Contact: jens.lehmann@cs.uni-bonn.de (please use the mailing list if possible)

• Latest Release: https://github.com/AKSW/DL-Learner/releases/tag/1.3.0
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