001/** 002 * Copyright (C) 2007 - 2016, Jens Lehmann 003 * 004 * This file is part of DL-Learner. 005 * 006 * DL-Learner is free software; you can redistribute it and/or modify 007 * it under the terms of the GNU General Public License as published by 008 * the Free Software Foundation; either version 3 of the License, or 009 * (at your option) any later version. 010 * 011 * DL-Learner is distributed in the hope that it will be useful, 012 * but WITHOUT ANY WARRANTY; without even the implied warranty of 013 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 014 * GNU General Public License for more details. 015 * 016 * You should have received a copy of the GNU General Public License 017 * along with this program. If not, see <http://www.gnu.org/licenses/>. 018 */ 019package org.dllearner.algorithms.properties; 020 021import java.util.SortedSet; 022 023import org.dllearner.core.ComponentAnn; 024import org.dllearner.kb.SparqlEndpointKS; 025import org.dllearner.learningproblems.AxiomScore; 026import org.semanticweb.owlapi.model.AxiomType; 027import org.semanticweb.owlapi.model.OWLDisjointObjectPropertiesAxiom; 028import org.semanticweb.owlapi.model.OWLObjectProperty; 029 030import org.apache.jena.query.ParameterizedSparqlString; 031 032@ComponentAnn(name = "disjoint object properties axiom learner", shortName = "opldisjoint", version = 0.1, description="A learning algorithm for disjoint object properties axioms.") 033public class DisjointObjectPropertyAxiomLearner extends ObjectPropertyHierarchyAxiomLearner<OWLDisjointObjectPropertiesAxiom> { 034 035 public DisjointObjectPropertyAxiomLearner(SparqlEndpointKS ks) { 036 super(ks); 037 038 super.posExamplesQueryTemplate = new ParameterizedSparqlString( 039 "SELECT DISTINCT ?s ?o WHERE {?s ?p ?o. FILTER NOT EXISTS{?s ?p_other ?o}}"); 040 super.negExamplesQueryTemplate = new ParameterizedSparqlString( 041 "SELECT DISTINCT ?s ?o WHERE {?s ?p ?o; ?p_other ?o.}"); 042 043 axiomType = AxiomType.DISJOINT_OBJECT_PROPERTIES; 044 } 045 046 /* 047 * (non-Javadoc) 048 * 049 * @see 050 * org.dllearner.core.AbstractAxiomLearningAlgorithm#getExistingAxioms() 051 */ 052 @Override 053 protected void getExistingAxioms() { 054 SortedSet<OWLObjectProperty> existingDisjointProperties = reasoner.getDisjointProperties(entityToDescribe); 055 if (existingDisjointProperties != null && !existingDisjointProperties.isEmpty()) { 056 for (OWLObjectProperty disProp : existingDisjointProperties) { 057 existingAxioms.add(df.getOWLDisjointObjectPropertiesAxiom(entityToDescribe, disProp)); 058 } 059 logger.info("Existing axioms:" + existingAxioms); 060 } 061 } 062 063 /* (non-Javadoc) 064 * @see org.dllearner.algorithms.properties.ObjectPropertyHierarchyAxiomLearner#getAxiom(org.semanticweb.owlapi.model.OWLObjectProperty, org.semanticweb.owlapi.model.OWLObjectProperty) 065 */ 066 @Override 067 public OWLDisjointObjectPropertiesAxiom getAxiom(OWLObjectProperty property, OWLObjectProperty otherProperty) { 068 return df.getOWLDisjointObjectPropertiesAxiom(property, otherProperty); 069 } 070 071 @Override 072 public AxiomScore computeScore(int candidatePopularity, int popularity, int overlap) { 073 AxiomScore score = super.computeScore(candidatePopularity, popularity, overlap); 074 075 // we need to invert the value 076 AxiomScore invertedScore = new AxiomScore( 077 1 - score.getAccuracy(), 078 1 - score.getConfidence(), 079 score.getNrOfPositiveExamples(), score.getNrOfNegativeExamples(), 080 score.isSampleBased()); 081 082 return invertedScore; 083 } 084}