public class FuzzyPosNegLPStandard extends FuzzyPosNegLP
| Constructor and Description |
|---|
FuzzyPosNegLPStandard() |
FuzzyPosNegLPStandard(AbstractReasonerComponent reasoningService) |
FuzzyPosNegLPStandard(AbstractReasonerComponent reasoningService,
SortedSet<org.semanticweb.owlapi.model.OWLIndividual> positiveExamples,
SortedSet<org.semanticweb.owlapi.model.OWLIndividual> negativeExamples) |
| Modifier and Type | Method and Description |
|---|---|
ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual> |
computeScore(org.semanticweb.owlapi.model.OWLClassExpression concept,
double noise)
Computes the
Score of a given hypothesis
with respect to this learning problem. |
EvaluatedDescription |
evaluate(org.semanticweb.owlapi.model.OWLClassExpression description)
Evaluates the hypothesis by computing the score and returning an
evaluated hypothesis of the correct type (ClassLearningProblem
returns EvaluatedDescriptionClass instead of generic EvaluatedDescription).
|
double |
getAccuracy(int posAsPos,
int posAsNeg,
int negAsPos,
int negAsNeg,
double noise) |
double |
getAccuracyOrTooWeak(org.semanticweb.owlapi.model.OWLClassExpression description,
double noise)
This method computes the accuracy and returns -1 instead of the accuracy if
the accuracy of the hypothesis is below the given threshold and
the accuracy of all more special w.r.t.
|
double |
getApproxDelta() |
double |
getFMeasureOrTooWeakApprox(org.semanticweb.owlapi.model.OWLClassExpression description,
double noise)
Deprecated.
|
Heuristics.HeuristicType |
getHeuristic() |
void |
init()
Method to be called after the component has been configured.
|
boolean |
isUseApproximations() |
void |
setAccuracyMethod(Heuristics.HeuristicType accuracyMethod) |
void |
setApproxDelta(double approxDelta) |
void |
setHeuristic(Heuristics.HeuristicType heuristic) |
void |
setUseApproximations(boolean useApproximations) |
getFuzzyExamples, getNegativeExamples, getPercentPerLengthUnit, getPositiveExamples, setFuzzyExamples, setFuzzyExamples, setNegativeExamples, setPositiveExampleschangeReasonerComponent, getExampleLoaderHelper, getReasoningUtil, setExampleLoaderHelper, setReasoner, setReasoningUtilcomputeScore, evaluate, getAccuracyOrTooWeak, getReasonerisInitializedpublic FuzzyPosNegLPStandard()
public FuzzyPosNegLPStandard(AbstractReasonerComponent reasoningService)
public FuzzyPosNegLPStandard(AbstractReasonerComponent reasoningService, SortedSet<org.semanticweb.owlapi.model.OWLIndividual> positiveExamples, SortedSet<org.semanticweb.owlapi.model.OWLIndividual> negativeExamples)
public void init() throws ComponentInitException
Componentinit in interface Componentinit in class FuzzyPosNegLPComponentInitException - This exception is thrown if any
exceptions occur within the initialisation process of this
component. As component developer, you are encouraged to
re-throw occurring exception as ComponentInitException and
giving an error message as well as the actually exception by
using the constructor ComponentInitException(String, Throwable).public double getAccuracyOrTooWeak(org.semanticweb.owlapi.model.OWLClassExpression description, double noise)
AbstractLearningProblemgetAccuracyOrTooWeak in class AbstractLearningProblem<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>,org.semanticweb.owlapi.model.OWLClassExpression,EvaluatedDescription<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>>>@Deprecated public double getFMeasureOrTooWeakApprox(org.semanticweb.owlapi.model.OWLClassExpression description, double noise)
public EvaluatedDescription evaluate(org.semanticweb.owlapi.model.OWLClassExpression description)
AbstractLearningProblemevaluate in class AbstractLearningProblem<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>,org.semanticweb.owlapi.model.OWLClassExpression,EvaluatedDescription<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>>>description - Hypothesis to evaluate.public double getApproxDelta()
public void setApproxDelta(double approxDelta)
public boolean isUseApproximations()
public void setUseApproximations(boolean useApproximations)
public Heuristics.HeuristicType getHeuristic()
public void setHeuristic(Heuristics.HeuristicType heuristic)
public void setAccuracyMethod(Heuristics.HeuristicType accuracyMethod)
accuracyMethod - the accuracy method to setpublic double getAccuracy(int posAsPos, int posAsNeg, int negAsPos, int negAsNeg, double noise)
public ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual> computeScore(org.semanticweb.owlapi.model.OWLClassExpression concept, double noise)
AbstractLearningProblemScore of a given hypothesis
with respect to this learning problem.
This can (but does not need to) be used by learning algorithms
to measure how good the hypothesis fits the learning problem.
Score objects are used to store e.g. covered examples, accuracy etc.,
so often it is more efficient to only create score objects for
promising hypotheses.computeScore in class AbstractLearningProblem<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>,org.semanticweb.owlapi.model.OWLClassExpression,EvaluatedDescription<ScorePosNeg<org.semanticweb.owlapi.model.OWLNamedIndividual>>>concept - A hypothesis (as solution candidate for this learning problem).noise - the (approximated) value of noise within the examplesScore object.
DL-Learner is licenced under the terms of the GNU General Public License.
Copyright © 2007-2019 Jens Lehmann